Hello Bio, Inc. 304 Wall St., Princeton, NJ 08540 USA

T. 609-683-7500 F. 609-228-4994

customercare-usa@hellobio.com

DATASHEET

Janelia Fluor® 525, free acid

Product overview

Name Janelia Fluor® 525, free acid

Cat No HB7173

Biological descriptionCell-permeable, yellow fluorescent dye supplied as a free acid. Suitable for confocal microscopy and super resolution microscopy (SRM) including techniques such as dSTORM (both live and fixed cells).

Can also be multiplexed with Janelia Fluor ® 635 SE for two color imaging.

Spectrally similar dyes: Alexa Fluor® 532, Alexa Fluor® 514, Atto 532, CF514, CF532

Yellow dye supplied as a free acid. Suitable for super resolution microscopy (e.g. dSTORM), confocal

microscopy and live cell imaging.

Images

Description

Biological Data

Application notes

#Protocol 1: Measurement of excitation and emission spectra of Janelia Fluor ${}^{\circledR}$ 525, free acid

- Janelia Fluor ® 525, free acid was prepared at 1µm in PBS.
- Spectra were generated on a Tecan Infinite M200 PRO using the following parameters:
 - $\circ\,$ Excitation: Recording at 618nm while exciting between 280nm and 590nm
 - Emission: Exciting at 484nm while recording between 510nm and 800nm
 - Absorbance: Measured between 300 and 800nm

Solubility & Handling

Storage instructions Solubility overview Important -20°C

Soluble in DMSO

This product is for RESEARCH USE ONLY and is not intended for therapeutic or diagnostic use. Not

for human or veterinary use

Chemical Data

Chemical name Molecular Weight Chemical structure

3,6-Di-1-(3,3-difluoroazetidinyl)-9-[2,5-dicarboxy-phenyl]xanthylium, inner salt

526.44

Molecular Formula

 \cap

Source Synthetic

InChiKey NEMQHPGUMYWUDT-UHFFFAOYSA-N

Licensing details Sold under license from the Howard Hughes Medical Institute, Janelia Research Campus

References

A general method to fine-tune fluorophores for live-cell and in vivo imaging.

Grimm JB et al (2017) Nature methods 14 **PubMedID** 28869757